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Summary

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by breakdown of 

tolerance to nucleic acids and highly diverse clinical manifestations. To assess its molecular 

heterogeneity, we longitudinally profiled the blood transcriptome of 158 pediatric patients. Using 

mixed models accounting for repeated measurements, demographics, treatment, disease activity 

(DA) and nephritis class, we confirmed a prevalent IFN signature and identified a plasmablast 

signature as the most robust biomarker of DA. We detected gradual enrichment of neutrophil 

transcripts during progression to active nephritis, and distinct signatures in response to treatment 

in different nephritis subclasses. Importantly, personalized immunomonitoring uncovered 

individual correlates of disease activity that enabled patient stratification into seven groups, which 

were supported by patient genotypes. Our study uncovers the molecular heterogeneity of SLE and 

provides an explanation for the failure of clinical trials. This approach may improve trial design 

and implementation of tailored therapies in genetically and clinically complex autoimmune 

diseases.
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Introduction

SLE is an incurable systemic autoimmune disease predominantly affecting young women. 

Patients characteristically produce autoantibodies against double-stranded DNA (dsDNA), 

ribonucleoproteins (RNPs), cardiolipin and phospholipids, among others. Autoantibodies 

form immune complexes (ICs) that deposit in many different organs such as the skin, joints 

and kidneys, leading to rashes, arthritis and lupus nephritis (LN). The disease course is 

unpredictable, with periods of remission and flares that lead to cumulative damage over time 

(Tsokos, 2011). This clinical heterogeneity calls for treatment personalization according to 

underlying molecular mechanisms.

Classification of SLE requires the presence of four out of eleven criteria. Disease activity 

(DA) is measured using any of six validated composite scores, including the SLE Disease 

Activity Index (SLEDAI), a weighted metric combining 24 components (Bombardier et al., 

1992). These scoring systems, while useful, only quantify a non-exhaustive set of 

parameters. Because SLE is heterogeneous, not all manifestations are included in the 

SLEDAI, making reliable patient assessment challenging. Thus, there is a significant need 

for biomarkers of disease pathogenesis and DA.

SLE is primarily managed with hydroxychloroquine (HC), corticosteroids and 

immunosuppressive agents such as mycophenolate mofetil (MMF) and cyclophosphamide 

(Bernatsky et al., 2006). An anti-BAFF human monoclonal antibody (belimumab) was 

recently approved (Navarra et al., 2011), representing the only novel therapy with SLE 

indication in more than 50 years. Failure to achieve primary endpoints in clinical trials 

targeting CD20 with rituximab and IFNα with rontalizumab (Ugarte-Gil and Alarcon, 2014) 

suggests that SLE is molecularly heterogeneous. Therefore, stratification of patients 

according to immune networks that associate with DA may facilitate the development of 

customized therapies using rational clinical trial designs.

SLE patients display unique blood transcriptional signatures linked to type I interferon (IFN) 

and granulocytes (Baechler et al., 2003; Bennett et al., 2003; Chaussabel et al., 2008; Chiche 

et al., 2014). Preliminary work suggests that these signatures can be used to assess DA 

(Chaussabel et al., 2008). Most studies have focused on IFN-induced transcripts or proteins 

as biomarkers (Chiche et al., 2014; Kirou et al., 2005; Petri et al., 2009) and suffer from 

sample size limitations and disease-inherent clinical and therapeutic heterogeneity, making 

data interpretation difficult. This underscores the need to assess larger cohorts longitudinally, 

to use unbiased approaches that incorporate all elements of the signature, and to account for 

disease heterogeneity and clinical covariates during data interpretation.

We aimed to identify immune correlates of DA in children with SLE, who present with 

aggressive disease and lack co-morbidities that might confound data interpretation in older 

age groups. To this end, we transcriptionally profiled 924 longitudinal blood samples from 

158 pediatric patients. To analyze these data, we developed models that incorporate DA, 

demographics, treatments, SLEDAI components and nephritis classes. Finally, we developed 

a personalized transcriptional immunomonitoring approach. This enabled patient 

stratification based on the immune networks best correlating with DA in each patient. The 
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accuracy of this stratification was supported by single nucleotide polymorphism (SNP) 

analysis and provides a rationale for tailored therapeutic interventions.

Results

A longitudinal study of 158 SLE patients

We collected clinical and blood transcriptional profiles from 158 pediatric SLE patients 

followed longitudinally for up to 1412 days, representing 924 unique visits. The 24 

components of the SLEDAI were collected at all time points to assess DA. Samples were 

categorized as DA1 (SLEDAI: 0-2), DA2 (SLEDAI: 3-7) or DA3 (SLEDAI > 7), based on 

SLEDAI distribution across the cohort. Treatment was recorded at blood draw and 

categorized as follows: no treatment (NT), HC only, oral steroids ± HC (OS), MMF ± 

HC/OS, and intravenous therapy consisting of cyclophosphamide and/or methylprednisolone 

± HC/OS (CIV). Forty-eight healthy pediatric individuals were enrolled as controls. For 

validation, patients were separated into independent training and test sets in a two-to-one 

sample-size ratio. No significant difference was observed in the distribution of race, DA or 

treatment between the sets. Effects of circadian rhythm, season, treatment dose and 

frequency on the transcriptional variance were either negligible or accounted for. Cohort 

characteristics are summarized in Table S1.

The SLE whole blood fingerprint

We first defined the global SLE signature by comparing all patient samples to healthy 

controls. Unsupervised hierarchical clustering of the 15,386 transcripts detected revealed a 

prevalent IFN signature in 784 out of 924 SLE samples (84.8%) (Figure 1A). To identify 

differentially expressed transcripts (DETs) between SLE patients and healthy controls, we 

developed a linear mixed model. These models include both fixed effects, such as disease, 

and random effects such as individual. They account for repeated measurements and enable 

the use of unbalanced data without excluding individuals with missing records. This model 

yielded 1,052 DETs in the training set, with high reproducibility in the test set (Figure 1B).

To functionally interpret these DETs, we conducted modular analysis (Chaussabel et al., 

2008). Briefly, we used a framework of 260 modules of transcripts co-expressed in blood 

across various immunological conditions to reduce data dimensionality. These modules were 

annotated using knowledge-based and data-driven approaches. To assess their specific 

enrichment in sorted hematopoietic cell populations, we applied our modular analysis to two 

public datasets (Figures S1A and B, (Novershtern et al., 2011; Streicher et al., 2014). In 

addition, a correlation matrix of module expression across our cohort was built and clustered 

(Figure S1C). Functional annotation of several undetermined modules could be inferred 

based on their proximity to annotated modules from lymphoid, myeloid or erythropoietic 

lineages.

The SLE modular fingerprint from the training set revealed overexpression of IFN response, 

neutrophil, inflammation, cell cycle, erythropoiesis and histone modules. Conversely, 

modules linked to NK cell/cytotoxicity, lymphoid lineage, B cells, T cells and protein 

synthesis were underexpressed (Figure 1C). The SLE module fingerprint was highly 
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reproducible in the test set as shown by linear regression (R2=0.94) (Figure 1D). Frequency 

analysis of IFN, plasmablast and neutrophil signatures, which were previously associated 

with SLE, revealed a more transient plasmablast signature (positive in 21.2% of samples) 

than IFN (84.8%) or neutrophil (48.8%), explaining the absence of plasmablast-related 

modules in the global SLE signature (Figure 1E). These results highlight the breadth and 

frequency of systemic immune signatures altered in SLE.

A plasmablast signature best correlates with disease activity

We next assessed how the SLE signature changes with DA. To do so, we developed a second 

model that incorporated both race and treatment, as these parameters impact the clinical 

course of SLE. It identified 3,501 DETs, which were clustered to highlight their individual 

behavior across DA, race and treatment groups, in training and test sets (Figure S2A and 

S2B).

Comparing DA3 vs. DA1 yielded 486 transcripts, of which 383 positively and 103 

negatively correlated with DA (Figure 2A). These transcripts were differentially expressed 

between DA levels regardless of race or treatment, as shown by their sustained upward or 

downward expression pattern across Race*DA and Treatment*DA interaction groups 

(subgroups of samples organized by DA levels 1, 2 and 3 for each value of the Race or 

Treatment variables) (Figure 2B). Their expression pattern was consistent in the test set 

(p<0.0001, overexpressed: R2=0.35; underexpressed: R2=0.55) (Figures 2C and S2C).

To functionally interpret these gene lists, we applied quantitative set analysis for gene 

expression (QuSAGE) (Turner et al., 2015; Yaari et al., 2013), using the blood modules as 

gene sets (Figures 2D and S2D). Positive correlates of DA were enriched for IFN response, 

plasmablast, cell cycle, neutrophil, histone and B cell modules. Reproducibility of module 

enrichment was assessed by Pearson correlation analysis of a module’s eigengene profile in 

training and test sets (Figure S2E). The plasmablast signature was the most reproducible 

(M7.32: R2=0.86; M4.11: R2=0.65; M7.7: R2=0.61), while the IFN response showed lower 

reproducibility (M1.2: R2=0.07; M3.4: R2=0.25; M5.12: R2=0.22). Transcripts negatively 

correlated with DA were enriched for NK cell/cytotoxicity, protein synthesis and 

erythropoiesis modules. FACS analysis of circulating plasmablasts in a subset of patients 

(n=36) confirmed their increasing frequency with increasing DA (Figure 2E).

Finally, transcripts linked to DA changes were represented as a Cytoscape network (Shannon 

et al., 2003) (Figure 2F). Along with blood module transcripts, this network displays DETs 

that do not belong to pre-established modules (connected to “NA” hub). Within this group, 

numerous IFN-regulated transcripts (IFI6, IFI27, IFI27L1, DDX60L, SIGLEC1), histone 

(HIST1H3E, HIST2H2AA4, HIST2H4B) and B cell-related (STAP1, LOC652126) genes 

were found, thereby expanding the results from modular enrichment analysis.

These observations highlight the plasmablast signature as the most robust biomarker of SLE 

DA across independent datasets.
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Increased plasmablast responses in African-American patients

The influence of race on SLE clinical severity is well documented, with African-Americans 

often presenting with more severe disease than Caucasians (Korbet et al., 2007). To assess 

whether transcriptional differences among individuals of various races exist, we compared 

the transcriptomes from African-American, Hispanic, and Caucasian patients in paired 

analyses, i.e., i) African-American, ii) Caucasian and iii) Hispanic vs. Others. We uncovered 

444 DETs among the three groups (Figure 3A). Functional interpretation by QuSAGE 

identified an enrichment of plasmablast, cell cycle and erythropoiesis modules in African-

Americans (Figures 3B and 3C). Conversely, Hispanics and Caucasians showed enrichment 

of neutrophil, myeloid lineage and inflammation-related modules.

To complement these observations, we analyzed the distribution of SLEDAI, anti-dsDNA 

antibody titers, C3 and ESR among these races by DA level. African-Americans displayed a 

significantly higher SLEDAI in the DA3 group and higher systemic inflammation as 

measured by ESR and C3 levels, consistent with increased clinical burden (Figure S3A). 

Accordingly, their anti-dsDNA antibody titers were increased compared to Caucasians and 

Hispanics in the DA3 group, as substantiated by the slope of the linear regression of 

SLEDAI vs. anti-dsDNA antibody titers (p<0.0001) (Figure 3D). Therefore, increase in DA 

is connected to enrichment in plasmablast signatures and circulating anti-dsDNA antibodies, 

particularly in African-Americans.

Effect of therapy on SLE blood signatures

We next assessed how treatment influences SLE blood transcriptional signatures by 

categorizing each sample into one of five treatment categories (NT, HC, OS, MMF, CIV). 

We identified 622 DETs in any treatment vs. others. Patients receiving HC only, given as 

primary therapy for milder clinical manifestations, displayed a module enrichment profile 

similar to that of untreated patients, who for the most part were in remission. Treatment 

groups including corticosteroids (OS and CIV) displayed an increased neutrophil signature, 

consistent with increased numbers of circulating neutrophils following these treatments. The 

plasmablast signature was decreased by all treatments compared to NT, but most strongly by 

MMF and CIV, two cytostatic drugs that suppress activated lymphocytes. These two 

therapies were also the most effective in decreasing the IFN response (Figures 3E and 3F). 

These results highlight changes in circulating leukocyte ratios as well as the association of 

more potent therapies with significant decrease in plasmablast and IFN response.

A neutrophil signature associates with lupus nephritis

Because the SLEDAI is a composite score evaluating 24 parameters, we assessed whether 

transcriptional differences could be detected as a function of discrete SLEDAI categories. 

We classified samples according to five groups of SLEDAI components: no SLEDAI 

parameters (“none”), alterations in serum parameters only (“serology”), connective tissue +/

− serology (“skin/musculoskeletal”), kidney +/− serology (“renal”), or all combined 

(“global”) reflecting the highest disease severity (Figure S3B). SLEDAI distribution across 

these groups confirmed a pattern of increasing DA from “none” to “global” (Figure S3C). To 

compare these groups, we developed a third model accounting for treatment, and obtained 

estimates for the comparisons between each active component group and “none”. QuSAGE 

Banchereau et al. Page 5

Cell. Author manuscript; available in PMC 2017 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



detected enrichment in IFN response, plasmablast and B cell modules in all comparisons, 

suggesting early involvement of these pathways in disease progression. Conversely, the 

neutrophil, myeloid lineage and inflammation modules were only enriched in the renal and 

global component groups, suggesting an association with kidney involvement (Figures 4A 

and 4B). FACS analysis in a subset of patients (n=31) revealed increased total and activated 

CD62L-low circulating neutrophil counts in patients with active nephritis (Figure 4C). These 

data support a model of gradual disease progression, whereby an initial increase in IFN 

response and differentiation of B cells into short-lived plasmablasts, which may occur before 

clinical onset (Arbuckle et al., 2003), is followed by kidney disease and full-blown systemic 

inflammation fueled by myeloid cells, including neutrophils.

Different transcriptional responses to treatment according to nephritis class

The term lupus nephritis (LN) includes a heterogeneous group of kidney pathologies 

histologically classified into six major types (I-VI) (Weening et al., 2004). Severe cases 

comprise proliferative (PLN, III and IV) and membranous (MLN, V) nephritis, or a 

combination of the two (VI). MMF is used to treat both PLN and MLN, though the 

pathogenesis of these two nephrites is different. To determine whether blood transcriptomics 

could inform on these differences, we developed a fourth model accounting for interactions 

between treatment and nephritis class, while adjusting for SLEDAI differences between 

groups. Samples were categorized into no LN (I), mesangial nephritis (II), PLN (III and IV) 

and MLN (V) (type VI was excluded from the analysis). We focused on three comparisons: 

i) untreated patients without LN vs. untreated PLN (untreated MLN samples were 

underrepresented in our cohort), ii) MMF-treated patients without LN vs. PLN or MLN and 

iii) direct comparison of PLN vs. MLN on MMF (Figure S3D).

MMF-treated PLN and MLN groups showed no difference in SLEDAI or neutrophil 

percentage (Figure S3E). Untreated PLN displayed enrichment (FDR<0.001) for modules 

correlating with DA, including neutrophils (3.49), plasmablasts (1.71), the IFN response 

(1.63) and B cells (1.33). Upon MMF treatment, enrichment of these modules decreased 

significantly more in PLN than in MLN (1.42, 1.27, 1.27 and 1.41-fold respectively, 

FDR<0.001) (Figures 4D and 4E).

In silico Ingenuity pathway analysis (IPA) further revealed that MMF-treated PLN 

overexpressed transcripts linked to myeloid lineage and inflammation (FcRs, CR1, IL1B, 

IL6R, CTSC) and underexpressed B cell and plasmablast transcripts (CD19, EBF1, E2F5, 

GAS6, ADARB1) (Figure 4F). Conversely, MMF-treated MLN overexpressed transcripts 

linked to activated neutrophils (DEFA1, DEFA4, CAMP, RNASE2, LTF) and the IFN 

response (MHC class I, IRF9, PSMBs, OASL, TRIM22) (Figure 4G). These data highlight a 

differential enrichment of molecular signatures in MMF-treated PLN and MLN, perhaps 

reflecting different pathogenic mechanisms leading to disease.

Personalized SLE transcriptional immunomonitoring

SLE is a heterogeneous disease, for which no single treatment is curative. Stratification of 

patients will be important to formulate customized therapies and improve clinical trial 

design. To address this, we leveraged weighted gene co-expression network analysis 
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(WGCNA) (Langfelder and Horvath, 2008; Zhang and Horvath, 2005) to identify modules 

of longitudinally co-expressed transcripts for individual patients and uncover associated 

clinical traits. Briefly, the entire dataset was divided into subsets of samples corresponding 

to each subject. Patient-specific modules of co-expressed transcripts over time were 

identified by WGCNA and continuous clinical traits were correlated to module eigengenes 

(Figure S4A). A module/trait correlation matrix was built for each patient and the module 

that best correlated with the SLEDAI was selected (hereafter SLEDAI WGCNA module) 

(Figure S4B).

An example is provided for patient SLE-55, an African-American female with PLN 

immunomonitored 13 times over 798 days. The SLEDAI indicated two flares at visits 3 and 

9. Both were accompanied by increases in anti-dsDNA antibody titers and neutrophil counts, 

but only the second flare was accompanied by an increase in ESR (Figure 5A). WGCNA 

identified 41 modules specific to her immunomonitoring time course, which were correlated 

with clinical traits (Figure 5B). The modules that best correlated with SLEDAI (brown), 

anti-dsDNA antibody titers (darkorange), neutrophil count (blue), C3 (midnightblue) and 

ESR (yellow) were selected (Figure 5C). To biologically interpret these modules, we 

projected their expression profile in the annotated blood module space, by correlating their 

eigengenes to those of blood modules. This approach allows us to automate the annotation 

of hundreds of WGCNA modules by comparing their expression pattern and transcript 

content to those of our reference blood modules. In this patient, the profile of the brown 

(SLEDAI) and blue (neutrophil %) modules positively correlated with myeloid lineage, 

inflammation and IFN response blood modules. The darkorange module that best fitted anti-

dsDNA antibody titers correlated with plasmablast, cell cycle and IFN modules. Finally, the 

yellow module (ESR) highly correlated with erythropoiesis (Figure 5D).

To facilitate access to these data, we developed a web interface available at http://

websle.com. For each patient, users can i) follow clinical trait changes over time; ii) analyze 

the profile and content of each WGCNA module; iii) identify modules and transcripts best 

correlating with clinical traits; iv) identify major module hubs through module membership 

quantification. The interface’s features are detailed in Figure S5.

To assess the heterogeneity of immune signatures associating with DA across patients, 

SLEDAI WGCNA modules were then recombined into an interindividual correlation matrix 

between WGCNA (y-axis) and whole blood (x-axis) modules, and hierarchically clustered. 

Subgroups of patients were identified based on the combination of blood immune signatures 

that best correlated with the SLEDAI. Finally, to assess whether there is a genetic basis for 

these clusters, we conducted SNP analysis (Figure S4C). We reasoned that the identification 

of individual immune correlates of DA could inform personalized therapeutic interventions 

(Figure S4D).

Patients stratify into seven groups based on transcriptional correlates of SLEDAI

We automated this analytical approach to stratify 80 patients with five or more visits. 

Clustering of the interindividual SLEDAI correlation matrix identified seven patient groups 

(PG1-7), each displaying a specific combination of five immune signatures correlating with 

the SLEDAI, including erythropoiesis, IFN response, myeloid lineage/neutrophils, 
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plasmablasts and lymphoid lineage (Figure 6A). Group-specific signature enrichment 

patterns are summarized in Figure 6B. Only plasmablast modules correlated with the 

SLEDAI in PG3, while only IFN response and myeloid lineage modules did in PG5. As a 

positive control, we identified WGCNA modules that best correlated with neutrophil percent 

in each patient, revealing a homogenous correlation pattern with myeloid lineage/neutrophil 

modules across patients (Figure S6A).

We considered a different stratification approach that used samples with high DA only 

(Supplemental Experimental Procedures). Clustering of transcripts modulated in this dataset 

revealed partial conservation of the original PG stratification, in particular for PG4 and PG5 

(Figure S6B). High DA and longitudinal correlation analyses were then conducted in 

parallel (Figure S6C). Similarities between methods were observed for the plasmablast 

signature (R2=0.47, Figure S6D). More pronounced differences were observed for IFN, 

erythropoiesis and myeloid lineage signatures, suggesting that the longitudinal approach 

contributes additional stratification information by incorporating molecular status during 

quiescent disease.

We analyzed the distribution of renal SLEDAI components, patient demographics, 

laboratory values and treatment between groups (Table S2). No difference was found 

between PGs for age, gender, race, sampling season or visit number. PG4 patients, for whom 

SLEDAI best correlated with IFN response, myeloid lineage and plasmablasts, all had LN, 

displayed the highest proportion of PLN, were on aggressive therapy and had the highest 

percentage of neutrophils, suggesting higher disease burden. Conversely, PG1 and PG6 

patients, for whom SLEDAI best correlated with erythropoiesis, displayed the lowest 

proportion of active nephritis.

To assess the contribution of genetics to this distribution, we genotyped 135 patients by SNP 

array and collected race-matched healthy controls from both our cohort and the 1000 

Genomes Project (G1K) (Figure S6E, Supplemental Experimental Procedures). We detected 

SNPs previously associated with SLE among numerous members of the HLA cluster on 

chromosome 6, as well as ITGAM, ITGAX, IRF5, TNPO3 and BANK1 with confirmatory 

significance (p<0.001) (Figure 6C) (Bentham et al., 2015). These results were validated by 

random permutation analysis (Supplemental Experimental Procedures).

To assess potential SNP differences between PGs while maximizing sample size, we 

grouped patients from PG2 and PG3 (PG2/3), where DA correlated with plasmablasts and/or 

lymphoid lineage, and patients from PG4 and PG5 (PG4/5), where DA correlated with IFN 

response and myeloid lineage. We compared these groups to race-matched healthy controls 

(Figure 6D) and to each other. In parallel, we conducted expression quantitative trait loci 

(eQTL) analysis to identify SNPs acting in cis on genes that change with DA (Supplemental 

Experimental Procedures, Table S3). We then overlapped the results from these analyses, 

focusing on 362 group-specific SNPs that overlapped with eQTLs (Figure 6E, Table S4). 

Numerous genes in cis with SNPs and distinct between PG2/3 and PG4/5 were related to 

lymphoid lineage/B cells (BANK1, CD3E, CD3G), myeloid lineage/neutrophils (BPI, 
CD300A, CXCL16, CCR1, RXRA, TKT, LILRB3, NOD2, SIGLEC9, PGLYRP1, MYD88, 
IL8, TNFAIP2, TNFRSF1A) or both (CD40). Overall, 126 out of 362 (35%) SNPs were 

Banchereau et al. Page 8

Cell. Author manuscript; available in PMC 2017 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acting in cis with an IFN-inducible gene (Rusinova et al., 2013). While studies in larger 

cohorts are warranted, these data suggest an association between genotype and 

transcriptional correlates of DA in discrete groups of SLE patients, which in combination 

might accelerate the identification of targets for personalized treatment.

A transcript panel for the molecular stratification of SLE patients

Finally, we sought a gene set that could stratify SLE patients with shorter follow-up. To do 

so, we conducted ANOVA (p<0.001) on the 11,457 transcripts that form the union of the 80 

WGCNA SLEDAI modules. 3,011 transcripts were differentially correlated between the 

seven patient groups. Of these, 797 intersected with the blood module space (erythropoiesis: 

149 transcripts; IFN response: 40; myeloid lineage/neutrophils: 163; plasmablasts: 9; 

lymphoid lineage: 436) (Figure 7A, Table S5). Classification accuracy of these transcripts in 

cross-validation analysis ranged between 0.81 and 0.91 depending on PG (Supplemental 

Experimental Procedures). We next correlated the SLEDAI of 12 additional patients 

followed during three or four clinic visits with the expression of these 797 transcripts. 

Specific immune correlates of the SLEDAI were identified in these individuals (e.g. IFN in 

SLE-187, myeloid lineage/neutrophils in SLE-255 and plasmablasts in SLE-268) (Figure 

7B). Finally, we assigned PG groups to these 12 donors using both hierarchical cluster tree 

inspection and k-nearest neighbors (k=5) approaches (Figure 7C). The two methods agreed 

for 8 out of 12 patients. SLE-157, 230 and 267 reproducibly associated with PG2, while 

SLE-187 and 255 associated with PG5. This suggests that these transcripts can stratify SLE 

patients and could be used in a targeted cost-efficient bioassay. Overall, our approach 

highlights immune signatures correlating with SLEDAI across different genotypes and 

phenotypes and supports the development of customized treatment strategies.

Discussion

SLE is a heterogeneous disease characterized by a wide spectrum of clinical manifestations 

and degrees of severity. To gain insight into the molecular heterogeneity of SLE, we profiled 

the blood transcriptome of a longitudinal cohort of pediatric patients. We identified a 

plasmablast signature as the most robust biomarker of DA. We also detected a gradual 

enrichment of immune signatures during disease progression, linking neutrophils to active 

nephritis. Finally, personalized immunomonitoring enabled patient stratification based on 

correlates of DA. This resulted in a comprehensive view into the heterogeneity of molecular 

signatures associated with clinical progression that could not be predicted with cohort-level 

analyses.

Previous studies designed to identify blood transcriptional correlates of DA in SLE mainly 

focused on limited numbers of IFN-inducible transcripts that might be induced indistinctly 

by type I-III IFN family members. Through an unbiased approach, we confirmed that the 

majority of samples in our cohort over-expressed IFN-inducible transcripts. This signature, 

together with plasmablast, B cell, neutrophil and histone transcripts, correlated with DA. Of 

these, the plasmablast signature was the most robust DA biomarker. These observations 

complement known associations between DA and numbers of circulating plasmablasts 

(Odendahl et al., 2000), which are the source of anti-dsDNA antibodies that fluctuate with 
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DA (Sanz and Lee, 2010). The plasmablast signature was reduced by all conventional SLE 

therapies, but most significantly by MMF and CIV. In addition to the anti-proliferative effect 

of both drugs, MMF is known to inhibit inosine 5′-monophosphate dehydrogenase, which is 

required for differentiation of mature B cells into plasma cells (Jonsson and Carlsten, 2003).

When accounting for ethnicity, the plasmablast signature showed stronger signal in African-

Americans, who also displayed the highest DA levels. Accordingly, we found the best 

correlation between anti-dsDNA antibody titers and SLEDAI in this ethnic group. African-

American patients respond better to B cell depletion therapies than Caucasian patients 

(Merrill et al., 2010). Conversely, they displayed lower responses to anti-BAFF treatment in 

a Phase III clinical trial (Navarra et al., 2011). This might be explained by their higher serum 

levels of BAFF (Ritterhouse et al., 2011), which may require higher drug doses for 

neutralization.

Neutrophil transcripts were enriched in patients with active renal disease. In lupus, these 

cells are primed by IFN and release both pro-inflammatory mediators and interferogenic 

DNA when exposed to SLE ICs (Garcia-Romo et al., 2011; Hakkim et al., 2010; Villanueva 

et al., 2011). Their specific contribution to different LN types has yet to be elucidated. 

Similarly to the plasmablast and IFN signatures, the neutrophil signature was extinguished 

after MMF treatment in PLN but not in MLN. Mechanistically, these observations are 

difficult to interpret. MMF may target an upstream event leading to induction of these 

signatures only in PLN. For example, a short-lived plasmablast-derived autoantibody 

responsible for pDC and neutrophil activation could drive PLN, as opposed to 

autoantibodies from long-lived non-proliferative plasma cells that would be resistant to this 

mode of therapy in MLN. Conversely, a pro-inflammatory signature including IL1A, IL1B 
and IL6R remained patent in PLN under MMF, suggesting that combination therapies 

including drugs targeting these pathways might be superior to current regimens against PLN.

The FDA approved only one drug for SLE treatment in the past 50 years. While several 

treatments improved disease in pre-clinical models and/or phase I-II clinical trials, larger 

phase III trials proved unsuccessful. A major hurdle in lupus therapy development is the lack 

of knowledge about molecular mechanisms driving DA in individual patients. Genomic 

approaches have identified various genetic pathways contributing to familial SLE, including 

immature B cell survival, early complement cascade components, regulation of IFN 

production and defects in cytoplasmic or extracellular DNA degradation (Cheng and 

Anderson, 2012). Allelic variants of genes involved in some of these pathways increase the 

risk of developing SLE in more common, non-familial cases. However, these alleles have so 

far not enabled the stratification of patients for customized treatment. Our longitudinal 

personalized immunoprofiling approach stratified patients into seven molecular groups 

according to DA correlates. This transcriptional stratification was complemented by SNP 

analysis that pointed at specific associations in distinct groups, despite limited sample size. 

Simultaneous eQTL analysis enabled the identification of group-specific SNPs that may 

directly affect the expression of neighboring genes. Further studies in larger cohorts are 

warranted and should include leukocyte profiling by flow cytometry to correct for blood 

population distribution in eQTL analyses.
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By highlighting the spectrum of individual correlates of DA over time, our approach 

provides a rationale for the failure of clinical trials in SLE, and an opportunity for the 

development of personalized therapies. Indeed, prevalent signatures that correlated with DA 

at the cohort level, such as IFN or plasmablast, failed to do so at the individual level in two 

thirds of patients. Future studies should assess the response to treatments targeting B cells/

plasmablasts, IFN and pro-inflammatory cytokines in these subgroups of patients.

While our longitudinal data could have been used to stratify patients solely based on 

molecular profiles, one of our main goals was to identify immune pathways associated with 

changes in clinical features. A potential caveat is the use of the SLEDAI to assess DA. This 

measure, although validated in all age and ethnic groups, still falls short of accurately 

capturing some relevant clinical aspects of the disease. In our pediatric cohort, however, the 

major contributor to SLEDAI is LN, which is more objectively quantified than other 

components of the index.

Biomarkers that can predict occurrence and frequency of flares will be of great value in the 

clinic (McKinney et al., 2015). The observational nature of this study, however, prevented 

the identification of flare predictors, as this would require more standardized and frequent 

sampling of individuals. Nevertheless, the molecular heterogeneity we unravel may inform 

the design of future studies to identify classifiers and predictors of DA.

While our study focused on SLE, our approach should be applicable to other clinically and 

genetically complex autoimmune diseases such as rheumatoid arthritis, inflammatory bowel 

disease, or inflammatory myopathies, where even approved therapies fail to induce 

remission in a significant number of patients. Future challenges include establishing the 

value of this approach to predict responses to targeted therapies and reducing the time to 

stratification. This might require integration of additional information such as epigenetic and 

proteomic data. Altogether, uncovering the molecular heterogeneity of complex diseases 

should enable a more rational use of available treatments, improve patient selection for 

clinical trials and guide the development of novel targeted drugs for precision medicine.

Experimental Procedures

Study design and patient characteristics

Children and adolescents with SLE were enrolled from the Rheumatology clinics at Texas 

Scottish Rite Hospital for Children and Children’s Medical Center Dallas. Study procedures 

were followed in accordance with protocols approved by the Institutional Review Boards at 

the University of Texas Southwestern Medical Center (092010-067) and Baylor University 

Medical Center (011-200). Informed consent was obtained from adults and the parents or 

guardians of those younger than 18 years of age. Assent was obtained from patients between 

10 and 17 years of age. Patients were evaluated by a standardized protocol during routine 

morning clinic visits every three months and more frequently if clinical symptoms warranted 

evaluation. Blood was collected in Tempus blood RNA tubes (Life Technologies) for 

microarray and ACD tubes (BD) for flow cytometry studies, and laboratory measurements 

were recorded. A patient was considered under intravenous cyclophosphamide or 

methylprednisolone treatment if they were administered within four weeks prior to blood 
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draw. Renal disease was defined by histopathological pattern on renal biopsy according to 

the International Society of Nephrology (ISN)/Renal Pathology Society (RPS) classification 

system. Active LN was defined by the presence of at least one component of the renal 

SLEDAI in patients with documented renal biopsy. Samples with hematuria attributable to 

menstruation were excluded. Because of low frequency, patients of Asian ethnicity were 

excluded.

RNA sampling, extraction and processing

Total RNA was extracted and amplified as previously described (Berry et al., 2010).

Batch correction

To correct for batch effect identified by principal variance component analysis (PVCA) 

(Figure S7A) and principal component analysis (PCA) (Figure S7B), 24 healthy control 

samples were run in both batches. The median raw expression ratio between batch 1 and 

batch 2 was calculated for each transcript for these 48 samples. The raw expression values 

from batch 1 samples were then multiplied by that ratio for each probe. This method was 

more effective than grouped-batch-profile (GBP) normalization and ComBat.

Modular transcriptional analysis

We used a pre-existing framework of 260 transcriptional modules to analyze this dataset 

(Chaussabel and Baldwin, 2014). For clarity, we presented the 97 modules forming the first 

seven rounds of selection of the module set. For the global SLE module fingerprint, each 

probe was statistically tested for difference in SLE vs. healthy through the mixed model 

(FDR<0.05). For each module, the percentage of probes significantly up- or down-regulated 

in the SLE group was calculated. The module score was defined as the difference %up - 

%down. For module fingerprints of individual samples, transcripts that display a normalized 

fold change ≥1.5 fold and a raw data difference ≥100 compared to the median of healthy 

controls were considered differentially expressed. For datasets generated with the 

Affymetrix platform, the transcripts were mapped to Illumina IDs through Refseq ID before 

the module activity scores were calculated.

Linear mixed models

Detailed explanations, code and result summary are presented in Supplemental Experimental 

Procedures and at http://websle.com.

Patient genotyping and SNP analysis

Detailed explanations are presented in Supplemental Experimental Procedures.

Online data access

The dataset described in this manuscript is deposited in the NCBI Gene Expression Omnibus 

under GEO Series accession number GSE65391. Both background-substracted and batch-

corrected expression datasets are presented.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The SLE blood transcriptional fingerprint
A. Hierarchical clustering of the 15,386 transcripts detected across the 972 samples 

composing the Dallas pediatric SLE cohort. The IFN response is highlighted in the dashed 

rectangle, and representative transcripts are listed. B. Heatmap representing the 1,052 DETs 

between healthy and SLE in the training (upper panel) and test (lower panel) sets. C. Upper 

panel: Blood module fingerprint of SLE in the training set. Lower panel: Blood modules 

functional annotation key. D. Linear regression of blood module expression in the training 

(x-axis) and test (y-axis) sets. E. Frequency of over/under-expression of IFN, plasmablast 

and neutrophil signatures in SLE samples. See also Figure S1.
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Figure 2. Transcriptional correlates of disease activity
A. Hierarchical clustering of the 486 DETs between DA3 and DA1, organized by DA, race, 

treatment and interaction terms. B. Line charts displaying the transcripts over- (upper panel) 

or under- (lower panel) expressed in DA3 vs. DA1. C. Linear regressions between training 

and test sets for over- and under-expressed transcripts. D. Heatmap representing the 

QuSAGE fold enrichment for these transcripts using blood modules as gene sets. E. Box 

plots representing the absolute count of circulating plasmablasts by FACS in a subset of 

patients, grouped by DA level. Plasmablast counts were found significantly different in DA3 

vs. DA1 (p=0.0069) and DA3 vs. DA2 (p=0.045) by a mixed model that adjusted for age and 

treatment (*: p<0.05; **: p<0.01). F. Cytoscape network displaying the connectivity of 

DETs in DA3 vs. DA1 with blood modules, which are represented as hubs (squares). Genes 
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not connected to a blood module are linked to the “NA” hub. Nodes are colored by the 

standard least-squares mean expression of the transcript in DA3. See also Figure S2.
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Figure 3. Influence of race and treatment on the SLE blood transcriptional fingerprint
A. Hierarchical clustering of the 444 DETs between the three race groups, organized by DA, 

race, treatment and interaction terms. B. Heatmap representing the QuSAGE fold 

enrichment of each group using blood modules as gene sets. The reproducibility of each 

module between training and test sets is displayed on the right. C. Dot plots representing the 

QuSAGE fold enrichment for four modules from B, with training and test set results 

combined. D. X-Y plot representing the linear regressions of SLEDAI vs. anti-dsDNA 

antibody titers by race group. E. Heatmap representing the QuSAGE fold enrichment for 

each treatment group versus others combined. Reproducibility between training and test sets 
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is also displayed. F. Dot plots representing the QuSAGE fold enrichment for neutrophil, B 

cell, plasmablast and IFN modules. See also Figure S3.
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Figure 4. A neutrophil signature associates with lupus nephritis
A. Heatmap representing the QuSAGE fold enrichment for each SLEDAI component group 

as compared to None. B. Line chart of the QuSAGE fold enrichment for IFN response, 

plasmablast and neutrophil modules. Whiskers represent the 95% confidence intervals. C. 

Box plots representing the absolute counts of bulk (left panel) and activated CD62L-low 

(right panel) neutrophils by FACS in a subset of patients with (n=8) or without (n=23) active 

LN. (*: p<0.05; **: p<0.01). Data were adjusted for age through a mixed model. Whiskers 

represent the minimum and maximum values. D. Heatmap representing the QuSAGE fold 

enrichment for PLN and MLN either compared to no nephritis (No LN) or directly to each 

other, with (MMF) or without (NT) treatment. E. Line chart representing the QuSAGE fold 
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enrichment for IFN response, plasmablast and neutrophil modules across the four 

comparisons. Whiskers represent the 95% confidence intervals. F–G. Ingenuity Pathway 

Analysis (IPA) networks of DETs from the estimates of PLN vs. no LN and MLN vs. no LN 

treated with MMF. DETs are represented on the outer circle and colored by fold change (red: 

overexpressed; green: underexpressed). Predicted upstream and downstream regulators 

(absolute z-score > 1) are represented on the inner circle.
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Figure 5. Individual immunomonitoring by WGNCA
A. Clinical summary for patient SLE-55. SLEDAI, anti-dsDNA antibody titers, neutrophil 

count, C3 and ESR are displayed as line charts as a function of days since the first visit (x-

axis). Treatment and nephritis class are also displayed. B. Hierarchical clustering of the 

module/trait correlation matrix for SLE-55. C. Line charts representing the modules that best 

correlate with SLEDAI, anti-dsDNA antibody titers, neutrophil count, C3 and ESR. The 

profile of the clinical trait is overlaid on the plot and represented as an interrupted black line. 

D. Hierarchical clustering of the correlation matrix between WGCNA and blood module 

eigengenes for SLE-155. See also Figure S4.
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Figure 6. Stratification of SLE patients based on transcriptional correlates of SLEDAI
A. Left panel: hierarchical clustering of the interindividual correlation matrix between the 

SLEDAI WGCNA modules for 80 patients (rows) and blood modules (columns). Center 

panel: correlation of blood modules averaged by immune group for each SLEDAI WGCNA 

module. A black square indicates a correlation ≥0.4. Right panel: transcript overlap between 

each WGCNA module and the combined list of blood module transcripts from the five 

groups (PG: patient group). B. Summary heatmap of patient stratification based on SLEDAI 

correlates. (ER: erythropoiesis; IFN: IFN response/neutrophils; ML: myeloid lineage/
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neutrophils; PB: plasmablasts; LL: lymphoid lineage). C–D. Manhattan plots representing 

the results from the comparative SNP analysis between SLE (n=80), PG2/3 (n=27) or PG4/5 

(n=26) and healthy controls. Loci related to genes previously associated with SLE are 

highlighted in red. E. Venn diagram of overlapping SNPs between PG2/3 vs. healthy, PG4/5 

vs. healthy, PG2/3 vs. PG4/5 and eQTLs (p<0.05). Genes in cis with these SNPs are 

displayed in boxes for relevant lists. See also Figure S6 and Tables S2, S3 and S4.
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Figure 7. A targeted panel for SLE patient stratification
A. Hierarchical clustering of the 797 transcripts differentially correlating with SLEDAI 

between the seven patient groups. B. Upper panel: summary heatmap of immune signatures 

correlating with the SLEDAI of 12 independent patients with three to four visits. Lower 

panel: Linecharts representing the mean normalized expression of immune signatures (left 

Y-axis) and SLEDAI (right Y-axis) for three representative patients. C. Hierarchical cluster 

of the 92 SLE patients considered, according to individual SLEDAI correlation profile in the 
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collapsed blood module space. Patients are colored by PG classification. PG assignment of 

the 12 new patients is highlighted by colored dots. See also Table S5.
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